传统方法使用 JSON 格式来指定工具名称和参数作为字符串,系统必须解析以确定要执行哪个工具。工具调用型 LLM 与直接生成并执行代码更有效。这是 smolagents 的核心原则。
为什么 LLM 可以生成 code ?因为高质量的 code 已经在 LLM 的训练集中了。
使用 Code 而不是JSON 的优势是:
- 模块化地组合和重用
- 对象管理,直接处理复杂的结构
- 可以表达任何计算上的任务
- 充分利用了code 生成的能力
CodeAgent 是特殊的 MultiStepAgent
实例
准备好 HF access token: xxx
使用 HF serveless API 时最好设置 HF_TOKEN,但是对于公共的 models 和 datasets,是 optional 的。HF 中免费的API调用次数是有限的。需要付费。
他需要强大的可追溯性以供未来的监控和分析
代理本质上是不可预测且难以检查的。他需要可以被追溯从而,供监控和分析。有工具可以做, OpenTelemetry 和 Langfuse 用于跟踪和分析 Agents 的行为。
通过上述工具可以重新审视之前的 Agent 行为并进一步优化。
code
pip install smolagents -U
pip install duckduckgo-search
# 登陆 HF
from huggingface_hub import notebook_login
notebook_login() # 非nodetbook时 使用 login()
# 使用 DuckDuckGoSearchTool 搜索内容
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel
agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=InferenceClientModel())
# 默认使用 InferenceClientModel - Qwen/Qwen2.5-Coder-32B-Instruct
# 这个过程会执行多个Step,因为可以前面的Step中 生成的code有语法错误,Agent会自己修改
agent.run("Search for the best music recommendations for a party at the Wayne's mansion.")
from smolagents import CodeAgent, InferenceClientModel
import numpy as np
import time
import datetime
# 代码执行有严格的安全措施 - 默认情况下会阻止 predefined safe list 之外的导入。
# 但可以通过将它们作为字符串传递给 additional_authorized_imports 来授权额外的导入
agent = CodeAgent(tools=[], model=InferenceClientModel(), additional_authorized_imports=['datetime'])
agent.run(
"""
Alfred needs to prepare for the party. Here are the tasks:
1. Prepare the drinks - 30 minutes
2. Decorate the mansion - 60 minutes
3. Set up the menu - 45 minutes
4. Prepare the music and playlist - 45 minutes
If we start right now, at what time will the party be ready?
"""
)
# push 到HF hub
# 改成你的 username/reponame
agent.push_to_hub('sergiopaniego/AlfredAgent')
# 加载 Agent,并让他工作
# 改成你的 username/reponame
alfred_agent = agent.from_hub('sergiopaniego/AlfredAgent', trust_remote_code=True)
alfred_agent.run("Give me the best playlist for a party at Wayne's mansion. \
The party idea is a 'villain masquerade' theme")
总之, smolagents 专门用于编写和执行 Python 代码片段,提供沙盒执行以保障安全。它支持本地和基于 API 的语言模型,使其能够适应各种开发环境。
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, InferenceClientModel, Tool, tool, VisitWebpageTool
@tool
def suggest_menu(occasion: str) -> str:
"""
Suggests a menu based on the occasion.
Args:
occasion: The type of occasion for the party.
"""
if occasion == "casual":
return "Pizza, snacks, and drinks."
elif occasion == "formal":
return "3-course dinner with wine and dessert."
elif occasion == "superhero":
return "Buffet with high-energy and healthy food."
else:
return "Custom menu for the butler."
@tool
def catering_service_tool(query: str) -> str:
"""
This tool returns the highest-rated catering service in Gotham City.
Args:
query: A search term for finding catering services.
"""
# Example list of catering services and their ratings
services = {
"Gotham Catering Co.": 4.9,
"Wayne Manor Catering": 4.8,
"Gotham City Events": 4.7,
}
# Find the highest rated catering service (simulating search query filtering)
best_service = max(services, key=services.get)
return best_service
class SuperheroPartyThemeTool(Tool):
name = "superhero_party_theme_generator"
description = """
This tool suggests creative superhero-themed party ideas based on a category.
It returns a unique party theme idea."""
inputs = {
"category": {
"type": "string",
"description": "The type of superhero party (e.g., 'classic heroes', 'villain masquerade', 'futuristic Gotham').",
}
}
output_type = "string"
def forward(self, category: str):
themes = {
"classic heroes": "Justice League Gala: Guests come dressed as their favorite DC heroes with themed cocktails like 'The Kryptonite Punch'.",
"villain masquerade": "Gotham Rogues' Ball: A mysterious masquerade where guests dress as classic Batman villains.",
"futuristic Gotham": "Neo-Gotham Night: A cyberpunk-style party inspired by Batman Beyond, with neon decorations and futuristic gadgets."
}
return themes.get(category.lower(), "Themed party idea not found. Try 'classic heroes', 'villain masquerade', or 'futuristic Gotham'.")
# Alfred, the butler, preparing the menu for the party
agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
VisitWebpageTool(),
suggest_menu,
catering_service_tool,
SuperheroPartyThemeTool(),
FinalAnswerTool()
],
model=InferenceClientModel(),
max_steps=10,
verbosity_level=2
)
agent.run("Give me the best playlist for a party at the Wayne's mansion. The party idea is a 'villain masquerade' theme")
使用 OpenTelemetry and Langfuse 检测 【todo】
# !pip install smolagents[telemetry] \
# opentelemetry-sdk \
# opentelemetry-exporter-otlp \
# openinference-instrumentation-smolagents
import os
import base64
from google.colab import userdata
LANGFUSE_PUBLIC_KEY=userdata.get("LANGFUSE_PUBLIC_KEY")
LANGFUSE_SECRET_KEY=userdata.get("LANGFUSE_SECRET_KEY")
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
# os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://us.cloud.langfuse.com/api/public/otel" # US data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
from smolagents import CodeAgent, InferenceClientModel
agent = CodeAgent(tools=[], model=InferenceClientModel())
alfred_agent = agent.from_hub('sergiopaniego/AlfredAgent', trust_remote_code=True)
alfred_agent.run("Give me best playlist for a party at the Wayne's mansion. The party idea is a 'villain masquerade' theme")